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1. Introduction

Years of intensive study of the AdS/CFT correspondence [1 – 3] have clarified various as-

pects of gauge theory and string theory. Most notably, the integrability of N = 4 super

Yang-Mills [4, 5] and classical superstring on AdS5 × S5 [6 – 9] provided us with a powerful

tool to examine the correspondence of the spectrum of both theories. Furthermore, the

asymptotic Bethe Ansatz [10, 11] with the dressing phase [12 – 19] succeeded in comput-

ing the conformal dimension of super Yang-Mills operators with large R-charge at weak

coupling, and the energy of closed string states with a large angular momentum at strong

coupling, by mapping an operator or a string state to a spin chain state.
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The structure of integrability often becomes simplified when we take one of the global

charges to a very large value or infinity. In particular, a spin chain with su(2|2)2 symmetry

appears when the size, i.e. the R-charge of operator or the angular momentum of string,

becomes infinite [20]. The spectrum of the su(2|2)2 spin chain contains an infinite tower of

BPS ‘magnon’ boundstates with non-trivial central charges [21 – 23]. String theory duals

of these BPS objects are called giant magnons [24] or dyonic giant magnons [25]. On gauge

theory side, these magnons or magnon boundstates are believed to obey the dispersion

relation

∆ − J1 =

√

Q2 +
λ

π2
sin2 p

2
, (∆, J1 → ∞) , (1.1)

where ∆ is the conformal dimension, J1 is one of the R-charges of the super Yang-Mills

operator, Q is the number of constituent magnons in a boundstate, λ is the ’t Hooft

coupling and p is the magnon momentum. On string theory side, giant magnons or dyonic

giant magnons satisfy

E − J1 =

√

J2
2 +

λ

π2
sin2 ∆ϕ1

2
, (E, J1 → ∞) , (1.2)

where E is the energy, J1 , J2 are the angular momenta of a string, and ∆ϕ1 is the angular

difference between string endpoints. The remarkable agreement between (1.1) and (1.2)

demonstrates that the AdS/CFT correspondence is highly trustable and the integrability

will be a promising approach. Details of the related progress including historical perspective

can be found in the review article of [26].

When J1 is finite, magnons or magnon boundstates receive finite-size corrections to

their energy (1.1) or (1.2), which behave quite differently at weak coupling and at strong

coupling.

At weak coupling, the asymptotic Bethe Ansatz correctly predicts the conformal di-

mension roughly up to the order of λL with L the length of the spin chain. Beyond that

order, virtual particles start to wrap around the spin chain, modifying the energy accord-

ingly. Finite-size effects of this type are called wrapping effects [27 – 29], and recent cal-

culations showed the anomalous dimension of length-four Konishi operator disagrees with

the prediction of the asymptotic Bethe Ansatz [17] starting from four-loop in λ [30 – 33],

∆Konishi = 4 + 12g2 − 48g4 + 336g6 + ∆(4)g8 , g ≡
√

λ

4π
. (1.3)

The prediction of the asymptotic Bethe Ansatz is ∆
(4)
ABA = −2820 − 288ζ(3). There are

two different predictions based on calculation of Feynman diagram [31 – 33], but both of

the diagrammatic results show the appearance of new degree 5 of transcendentality which

never appeared in the prediction of the asymptotic Bethe Ansatz.1

At strong coupling, finite-size (or finite-J1) correction to giant magnons or dyonic giant

magnons comes in as a term exponentially suppressed in size at classical level [35 – 39] as

well as one-loop level [40, 41]. Similar behavior was observed earlier in [42, 43], where it

1Note added: The very recent work [34] strongly supports that ∆(4) in [31, 32] is the correct four-loop

anomalous dimension of the length four Konishi operator.
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was found that the quantum string Bethe Ansatz could not reproduce such exponentially

suppressed one-loop terms [43].

Assuming that the integrability in both gauge and string theories still survives at finite

size, we are motivated to develop an appropriate method to compute finite-size effects from

infinite-size information. Interestingly, it was argued that wrapping effects at weak coupling

are related to exponential corrections at strong coupling [29, 44]. Thus we may hope that

both effects are explained in a simple and unified way.

Several methods to compute finite-size spectrum are known in the literature of inte-

grable systems. Considering the fact that (giant) magnons are excitations over the fer-

romagnetic vacuum of the su(2|2)2 spin chain, we think of the following two methods as

hopeful candidates: the Lüscher formula [45, 46] (see also [47 – 49]) and the Thermodynamic

Bethe Ansatz [50 – 52].

The original Lüscher formula relates finite-size mass shifts in relativistic field theories

in any dimensions with the S-matrix of the infinite-size theory. Conversely said, once the

exact finite-size mass is known, through this formula one can probe the spectrum and the

S-matrix of infinite-size theory in great detail. The Lüscher formula was generalized to

the case of general dispersion relation by Janik and  Lukowski [53], where they showed it

reproduced the leading finite-size correction to a classical giant magnon [35, 36]. There

they had to evaluate carefully the dressing phase to all orders in λ to obtain the correct an-

swer. This agreement provided another consistency check for the conjectured expression of

dressing phase. Similar agreements are also found for a classical dyonic giant magnon [37],

and the results for a one-loop giant magnon are found in [40, 41].

The (generalized) Lüscher formula is applicable to a large variety of field theories

and thus quite useful. However, the formula is valid only when the system size is very

large. In contrast, Thermodynamic Bethe Ansatz (TBA) is believed to give the exact

spectrum at arbitrary size, although applicable only to integrable systems with factorized

scattering. When the system size becomes large, TBA for one-particle states agrees with

the (generalized) Lüscher formula [51, 52]. We expect that in any integrable systems to

which Bethe Ansatz is applicable, one can obtain the generalized Lüscher formula for

multi-particle states by taking the large size limit of TBA for the corresponding states.

However, it turns out that the formulation of TBA for the su(2|2)2 spin chain is

not at all easy. For this purpose, we need to know the complete spectrum and the S-

matrix of so-called mirror theory [54]. Although it is conjectured the mirror S-matrix

is related to S-matrix of the original theory by analytic continuation [54], explicit com-

putation of the elementary-boundstate and boundstate-boundstate S-matrices looks quite

complicated [55].

The aim of this paper is to propose the generalized Lüscher formula for multi-particle

states. A candidate of such formula has recently been conjectured in [56] without justifica-

tion. Though we do not derive it from the TBA equations for the su(2|2)2 spin chain, we

collect positive supports for our proposal through comparison with semiclassical strings on

AdS5 ×S5 , the exact finite-size spectrum of sinh-Gordon theory [57], and the computation

of finite-size correction to the energy of multi magnon states from the Bethe Ansatz [58].

In an appendix, we apply our formula to two magnon states in the su(2) sector at weak

– 3 –
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coupling, including the length four Konishi descendant of N = 4 theory. Interestingly, it has

recently been indicated that wrapping effects for such operators exhibits transcendentality

depending on the length of spin chain [59], namely

The wrapping effects of length L operator in the su(2) sector

receives corrections of the form ζ(2L − 3) starting from g2L.
(1.4)

Although this observation is obtained for one-magnon states of the β-deformed super Yang-

Mills, we guess that this general pattern will also hold for (two-magnon) states in N = 4

theory, as it does for L = 4 (1.3). Note that transcendental feature of wrapping effects

was also found in [56], in which they considered sum over an infinite species of auxiliary

roots in sl(2) spin chain, though the degree of transcendentality was different from (1.4)

for their toy model.

As soon as one tries to apply our formula to length L operators at weak coupling,

one finds that just summing over elementary particles does not reproduce transcendental

nature of wrapping effects. To solve this problem, we propose to execute summation

over an infinite tower of boundstates to reproduce the correct wrapping behaviour. This

prescription seems quite natural from a TBA point of view, where we obtain the partition

function by summing over all particle spectrum of the (mirror) theory.

This paper is organized as follows. In section 2 we briefly review the generalized

Lüscher formulae for one-particle states and present our proposal for multi-particle states.

In section 3 we derive our F -term formula by slightly generalizing one-loop finite-gap

computation of [40], and further compare the F -term formula with Teschner’s exact results

for sinh-Gordon model [57]. In section 4 we discuss the µ-term, which reproduces the

leading finite-size behaviour of multi giant magnons found in [38]. For boundstates in

the su(2) sector, the µ-term formula can be derived from the asymptotic Bethe Ansatz

under some assumptions. In section 5 we give summary and discussions. Some details of

computation are explained in appendices A and B. Finally in appendix C, we apply our

formula to length L multi-magnon states at weak coupling.

Note added: while this paper is in preparation, we find a paper [34] on arXiv, which

has a substantial overlap with ours.

2. The generalized Lüscher formula

We start from a brief description of the generalized Lüscher formula for one-particle states,

and then propose the refined formula for multi-particle states.

2.1 One-particle states

A particle in quantum field theory is always accompanied by a cloud of virtual particles.

When it is put on a periodic box of length L, virtual particles start to wrap around,

polarizing the vacuum. They also modify the energy of real particles, and this finite-

L correction should come as e−qL, where q is the Euclidean momentum of the virtual

particle. This is the finite-size effect computed by Lüscher’s F -term formula. In addition,

– 4 –
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when virtual particles interact with a real (boundstate) particle, they may induce the decay

or the merge of the boundstate. Such effects are described by Lüscher’s µ-term formula.

Let a be an incoming particle with real momentum p, and b be a virtual particle

with momentum q wrapping around the cylinder. We denote the finite-size correction to

the energy of particle a by δEa . The generalized Lüscher formula for one-particle state

proposed by Janik and  Lukowski is written as δEa = δEF
a + δEµ

a . The F -term is given by

δEF
a = −

∑

b

(−1)Fb

∫ ∞

−∞

dq̃

2π

(

1 − ǫ′a(p)

ǫ′b(q
1)

)

e−iq1L
(

Sba
ba(q1, p) − 1

)

, (2.1)

where q̃ = iq0 is the Euclidean energy of the virtual particle, ǫa(p) is the dispersion relation

of particle a, and ǫ′a(p) = (dǫa(p)/dp). The symbol Fb accounts for the statistics, and takes

the value +1 if b is a boson and −1 if b is a fermion. Here the ‘virtual’ particle b has already

been put on-shell because off-shell contribution can be neglected. Thus the particle b obeys

the condition q̃2 + ǫ2
b(q1) = 0. The µ-term arises if the integral over q̃ in (2.1) picks up a

pole of the S-matrix, and is given by

δEµ
a =

∑

b

(−1)Fb
{

ǫ′b(q∗) − ǫ′a(p)
}

e−iq∗L Res
q1=q∗

Sba
ba(q1, p) , (2.2)

where q∗ denotes the boundstate pole of Sba
ba(q1, p).2

Since we are interested in the dispersion relation of magnon excitation of su(2|2)2

spin-chain (1.1), q1 is expressed in terms of q̃ as

q1 = −2i arcsinh





√

Q2
b + q̃2

4g



 , (2.3)

where we chose the sign such that the finite-size corrections (2.1), (2.2) should decay at

large L. This dispersion relation exhibits interesting weak and strong coupling behaviors.

If the virtual particle wrap n times around the cylinder, its polarization effect gain the

factor of e−inq1L. This factor behaves, around q̃ ∼ 0, as

e−inq1L →
(

2g

Qb

)2nL

(g ≪ 1) , e−inq1L → exp

(

−nQbL

2g

)

(g ≫ 1) . (2.4)

It shows that at strong coupling only virtual particles with Qb = 1 contributes to the

leading exponential correction, and those with Qb > 1 mix with higher wrapping effects.

On the other hand, at weak coupling, virtual particles with any Qb can contribute to

corrections of the order g2L.

When the particle a is a single giant magnon, one can compute its finite-size correction

to the energy using the dispersion ǫa(p) ≈ 4g
∣

∣sin p
2

∣

∣ and the S-matrix of the su(2|2)2 spin

chain [20, 22, 60]. The results read [53, 41]

δEF
GM = −

√

g

πJ1

16 sin2(p
4)

1 − sin(p
2 )

exp

(

−J1 + 4g sin(p
2 )

2g

)

, (2.5)

δEµ
GM = −16g sin3

(p

2

)

exp

(

−J1 + 4g sin(p
2 )

2g sin(p
2 )

)

. (2.6)

2Here we take the residue of µ-term with respect to q1 instead of q̃.
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The F -term agrees with the one-loop calculation of [40] and the µ-term agrees with the

classical energy of finite-size giant magnon [35, 36]. In the previous paper [37], we confirmed

agreement between the classical energy of finite-size dyonic giant magnon [61] and the µ-

term for a magnon boundstate.

2.2 Multi-particle states

Let A∞ ≡ {a1(p1) · · · aM (pM )}∞ be a string state made up of M giant magnons, with

the ℓ-th giant magnon carrying momentum pℓ . We consider the simplest case where the

polarizations of giant magnons are the same. Since giant magnons are thought of as BPS

objects, the total energy of the state A∞ should be

EA∞
− J1 =

M
∑

ℓ=1

√

1 + 16g2 sin
pℓ

2
≈

M
∑

ℓ=1

4g
∣

∣

∣
sin

pℓ

2

∣

∣

∣
+ O

(

1

g

)

. (2.7)

Next, let A ≡ {a1(p1) · · · aM (pM )} be a string state made up of M finite-size giant

magnons. The finite-size correction δEA ≡ EA − EA∞
will in general take the form

δEA =

M
∑

ℓ=1

{

E
(ℓ)
0 (g, {pk}) exp

(

− EA∞

2g sin pℓ

2

)}

+ E1 (g, {pk}) exp

(

−EA∞

2g

)

(2.8)

+O
({

exp

(

− EA∞

g sin pℓ

2

)}

, exp

(

−EA∞

g

))

,

where

E
(ℓ)
0 (g, {pk}) = gE

(ℓ)
00 ({pk}) + E

(ℓ)
01 ({pk}) + O

(

1

g

)

, (2.9)

E1 (g, {pk}) =

√

g

J1
E10 ({pk}) + O

(

1√
g

)

. (2.10)

The term E
(ℓ)
00 ({pk}) is the classical energy of finite-size giant magnons, and the next

term E
(ℓ)
01 ({pk}) is the one-loop correction to it. Origin of the term E10 ({pk}) is that

mode numbers of quantum fluctuation around any classical background are quantized at

finite-size system, giving additional contribution to the energy.

At strong coupling, we know that E00(p) ≈ δEµ
a and E10(p) ≈ δEF

a when a is a single

finite-size (dyonic) giant magnon with momentum p = ∆ϕ1 . Thus, we may expect the

term E
(ℓ)
00 ({pk}) or E10 ({pk}) for multi magnon states should also match the generalized

Lüscher µ- or F -term at strong coupling, respectively. This reasoning helps us to conjecture

the generalized Lüscher formula for multi-particle states. Our proposal is

δEA(L) = δEF
A (L) + δEµ

A(L) and δEF
A = δEF

A
(main) + δEF

A
(back) . (2.11)

– 6 –
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The F -terms are given by

δEF
A

(main) = −
∑

b

(−1)Fb

∫ +∞

−∞

dq̃

2π
e−iq1L

(

M
∏

ℓ=1

S baℓ

baℓ
(q1, pℓ) − 1

)

, (2.12)

δEF
A

(back) = +
∑

b

(−1)Fb

∫ +∞

−∞

dq̃

2π

{

M
∑

k=1

αk

ǫ′ak
(pk)

ǫ′b(q
1)

}

e−iq1L

(

M
∏

ℓ=1

S baℓ

baℓ
(q1, pℓ) − 1

)

,

(2.13)

where {αk} are in general functions of q and {pℓ} obeying the constraint
∑M

k=1 αk = 1,

and µ-term is given by

δEµ
A = Re

{

M
∑

ℓ=1

∑

b

(−1)Fb
{

ǫ′b(q
∗
ℓ ) − ǫ′aℓ

(pℓ)
}

e−iq∗ℓ L Res
q1=q∗ℓ

S baℓ

baℓ
(q1 , pℓ)

M
∏

k 6=ℓ

S bak

bak
(q∗ℓ , pk)

}

,

(2.14)

where q∗ℓ denotes the pole of S baℓ

baℓ
(q1 , pℓ).

The object δEF
A consists of two terms. As will be discussed in section 3, the first term

δEF
A

(main) represents the energy of the virtual particle b, and the second term δEF
A

(back)

represents backreaction to the energy of the real particles A. We do not attempt to de-

termine the backreaction part further, because it can be neglected at the leading order of

approximations we will use. Note that the backreaction part can be determined in principle

for the sinh-Gordon model at finite volume discussed in section 3.3.

Some remarks are now in order:

• We have assumed the S-matrix to be diagonal, which is certainly the case when a is

a scalar and b is any elementary particle of the su(2|2)2 spin chain,

S(y, x) ∼ S0(y, x)
[

a1E
1
1 ⊗E1

1 + (a1 +a2)E1
1 ⊗E2

2 +a6(E1
1 ⊗E3

3 +E1
1 ⊗E4

4)
]2

. (2.15)

where a1, a2, a6 are some functions of the momentum of particles a and b [20, 22, 60].

This S-matrix (2.15) is called diagonal because no terms E1
1 ⊗Ei

j (i 6= j) are present.3

When they are not diagonal, we have to modify the above formula like the conjecture

of [56].

• Just as in the (generalized) Lüscher formula, our formula will be valid only when L

is very large. They may receive further corrections compared with TBA, such as the

one coming from convolution integral, which would modify the result.

• In contrast to the F term, the expression of the µ-term (2.14) can be complex-valued

if we do not take its real part. To explain why we take the real part, let us recall

the derivation of the generalized Lüscher formula by Janik and  Lukowski [53]. There

they used parity symmetry of integral over q1 to render cos(q1L) 7→ 2e−iq1L, which,

however, may change the result when one analytically continues q1 into the complex

region. If we undo this procedure, we arrive at the µ-term formula as shown above.

3Here (E1, E2, E3, E4) = (φ1, φ2, ψ1, ψ2) signify the basis of 2|2 representation, and four scalars of

N = 4 theory correspond to φaφ̄ȧ.

– 7 –
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3. The F -term formula for multi-particle states

3.1 One-loop finite-size correction to energy from finite-gap

We start by simplifying the expression of F -term a little bit for the case of our concern.

Since the exponential factor of (2.12) is e−2L arcsinh(
√

1+q̃2/(4g)), it decays rapidly as q̃ in-

creases. It allows us to evaluate the integral over q̃ by the saddle-point approximation for

L ≫ g ≫ 1. We obtain

δEF
a ≈ −

∫ ∞

−∞

dq̃

2π
e−iq1L

∑

b

(−1)Fb

N
∏

ℓ=1

Sbaℓ

baℓ
(q1, pℓ) , q1 ≈ −i

(

1

2g
+

q̃2

4g

)

, (3.1)

where the saddle point is at q̃ = 0, i.e. q1 = −i/(2g). The term
∑

b(−1)Fb disappears due

to supersymmetry of the su(2|2)2 spin chain, and the terms with αℓ vanish because the

factor 1/ǫ′b(q
1) ∝ ǫb(q

1) becomes zero at the saddle point. We will show that the simplified

formula (3.1) agrees with the exact computation of one-loop energy around finite-size multi

giant magnons. Because the computation itself is straightforward extension of [40], we will

often skip the details.

As discussed in [40], in order to compute the term E10 ({pℓ}) of (2.10), we may ap-

proximate the classical background by multi giant magnons of infinite size, because this

approximation just modifies the terms E
(ℓ)
01 or higher.

Following the convention of [40], we consider the simplest system of multi giant

magnons, where all of them have the same polarization with the spectral parameters located

outside the unit circle. The quasimomenta of such solutions are given by,

p1̂,2̂(x) = −p3̂,4̂(x) =
∆

2g

x

x2 − 1
, (3.2)

p2̃(x) = −p3̃(x) =
∆

2g

x

x2 − 1
+
∑

ℓ

(

1

i
log

x − X+
ℓ

x − X−
ℓ

+ φ̃2,ℓ

)

, (3.3)

p1̃(x) = −p4̃(x) =
∆

2g

x

x2 − 1
+
∑

ℓ

(

1

i
log

x − 1/X−
ℓ

x − 1/X+
ℓ

+ φ̃1,ℓ

)

, (3.4)

where X±
ℓ are spectral parameters of the ℓ-th (dyonic) giant magnons,

X±
ℓ = e±ipℓ/2

Qℓ +
√

Q2
ℓ + 16g2 sin2 pℓ

2

4g sin pℓ

2

. (3.5)

If we employ the orbifold regularization [40, 62] to lift the constraint on the total momen-

tum, we should choose the twists as

φ̃1,ℓ = φ̃2,ℓ = −pℓ/2, (3.6)

to meet the twisted boundary condition ξ1(x = +∞, t) = eiP ξ1(x = −∞, t), P ≡∑ℓ pℓ .

What we are going to compute as the one-loop energy is the sum over characteristic

frequencies specified by the polarization (ij) and the mode number n,

δǫ1-loop =
1

2

∑

n∈Z

∑

(ij)

(−1)Fij Ωij
n . (3.7)

– 8 –
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Characteristic frequencies Ωij
n are usually computed by expanding the action around a given

classical background [63]. For an integrable field theory with solitons, there is an alternative

way of computation, namely to add an extra small-energy soliton to a given background

and compute its energy including backreaction [64 – 66]. In the finite-gap language, this

procedure corresponds to perturbing a given background by adding poles with appropriate

residues [67].

As shown in appendix A, on the multi giant magnon background (3.2)–(3.4), the

characteristic frequencies Ωij
n become

Ωij
n = Ω(xij

n ), Ω(x) =
2

x2 − 1

[

1 −
M
∑

ℓ=1

αℓ

(

X−
ℓ + X+

ℓ

X−
ℓ X+

ℓ + 1

)

x

]

,

M
∑

ℓ=1

αℓ = 1. (3.8)

To understand the meaning of (3.8), let us recall that if we evaluate the energy of a giant

magnon (1.2) in the plane-wave limit ln
(

X+
pw/X−

pw

)

≡ iQpwPpw/(2g) ≪ 1, we obtain the

dispersion relation Epw =
√

1 + P 2
pw . If we parametrize the energy and the momentum of

plane-waves by

Epw =
x2 + 1

x2 − 1
= 1 + ǫfluc , Ppw =

2x

x2 − 1
= pfluc , (3.9)

the function Ω(x) can be rewritten as

Ω(x) = ǫfluc −
M
∑

ℓ=1

αℓ

(

dǫℓ,∞

dpℓ

)

pfluc ≡ ǫfluc +
M
∑

ℓ=1

δpℓ

(

dǫℓ,∞

dpℓ

)

. (3.10)

Thus, the function Ω(x) roughly stands for the energy of plane-wave excitations and its

backreaction onto multi giant magnons weighted by αℓ , as discussed in [40]. From (3.10)

we can also find the conservation of momentum

M
∑

ℓ=1

δpℓ + pfluc =

(

−
M
∑

ℓ=1

αℓ + 1

)

pfluc = 0. (3.11)

Once the function Ω(x) is known, one can carry out the summation over mode numbers

and polarizations as in [40]. At an intermediate step, one can show
∑

ij(−1)F (pi − pj) = 0

for the multi giant magnon background (3.2)–(3.4), which shows the one-loop energy of

such background indeed vanishes at infinite size as in (2.7). The first nontrivial term is

δǫ1-loop ≈
∮

U+

dx

2πi

∑

(ij)

(−1)Fij e−i(pi−pj)∂xΩ(x), (3.12)

where U+ is the upper half part of the unit circle. The sum over polarizations becomes

∑

(ij)

(−1)Fije−i(pi−pj) =
(

A+ + A− − 2
)2

exp

(

− i∆

g

x

x2 − 1

)

, (3.13)

where

A+ =
∏

ℓ

x − X+
ℓ

x − X−
ℓ

e−iφ̃2,ℓ , A− =
∏

ℓ

x − 1/X−
ℓ

x − 1/X+
ℓ

e−iφ̃1,ℓ , ∆ = J1 +
∑

ℓ

4g
∣

∣

∣sin
pℓ

2

∣

∣

∣ .

(3.14)
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Note if there are Q giant magnons under the boundstate condition y+
i = y−i+1 (i = 1, . . . , Q−

1), we obtain

Q
∏

i=1

x − y+
i

x − y−i
=

x − y+
Q

x − y−1
≡ x − Y +

x − Y −
,

Q
∏

i=1

x − 1/y−i
x − 1/y+

i

=
x − 1/y−1
x − 1/y+

Q

≡ x − 1/Y −

x − 1/Y +
. (3.15)

Also, the equality A+ = A− follows from the choice of twist (3.6) and y±i ≈ 1/y∓i coming

from (3.5) at strong coupling.

The other factor in the integrand, ∂xΩ(x), is proportional to the ‘kinematical factor’

of the F -term formula,

∂xΩ(x) = − 4x

(1 − x2)2

(

1 −
∑

ℓ

αℓ ǫ′aℓ
(pℓ)

1 + x2

2x

)

∝
(

1 −
∑

ℓ

αℓ

ǫ′aℓ
(pℓ)

ǫ′b(q
1)

)

, (3.16)

where ǫ′b(q) ≡ ǫ′fluc(pfluc).

Finally we evaluate the integral (3.12) by saddle-point approximation. As one can see

from (3.13), the saddle point lies at x = i, which implies Efluc(pfluc) ∝ 1/ǫ′b(q) = 0 and the

terms proportional to αℓ in (3.16) drop off. Moreover, the sum over flavor (3.13) can be

identified with the S-matrix part of the F -term formula:

∑

(ij)

(−1)Fij e−i(pi−pj) ≈ 4

M
∏

ℓ=1

S0(xq, xpℓ
)

(

M
∏

ℓ=1

a1(xq, xpℓ
) −

M
∏

ℓ=1

a6(xq, xpℓ
)

)2

=
∑

b

(−1)Fb

M
∏

ℓ=1

S baℓ

baℓ
(q1, pℓ). (3.17)

To show these equalities, we have to use the following kinematics

x±
pℓ

= e±ipℓ/2 , x±
q = i,

(

q1 = − i

2g

)

, (3.18)

as well as the expressions of su(2|2)2 S-matrix at strong coupling [60, 20, 22],

S0(xq, xp) ≡
x−

q − x+
p

x+
q − x−

p

1 − 1
x−

p x+
q

1 − 1
x+

p x−

q

σ2(xq, xp) ≈ e−2 sin p
2 , (3.19)

a1(xq , xp) ≡
x−

p − x+
q

x+
p − x−

q

η(xp)η(xq)

η̃(xp)η̃(xq)
≈ e−ip/2 − i

eip/2 − i
eip/2 , (3.20)

a2(xq , xp) ≡
(x−

q − x+
q )(x−

p − x+
p )(x− − x+

q )

(x−
q − x+)(x−

p x−
q − x+

p x+
q )

η(xp)η(xq)

η̃(xp)η̃(xq)
≈ O(g−1) , (3.21)

a6(xq , xp) ≡ x+
q − x+

p

x−
q − x+

p

η(xp)

η̃(xp)
≈ 1 , (3.22)

with the choice of the so-called string frame η(xq)/η̃(xq) =
√

x+
p /x−

p , η(xp)/η̃(xp) =
√

x−
q /x+

q .

In summary, collecting the results (3.12), (3.13), (3.14), (3.16) and (3.17), one can

find that one-loop finite-size correction to the energy agrees with the generalized F -term

formula for multi-particle states advertised in (3.1).
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3.2 One-loop finite-size correction to the energy of multi giant magnons

Here we explicitly evaluate the one-loop finite-size correction to the state with M giant

magnons, A = {a(p1) . . . aM (pM )}.

From the argument at the beginning of section 3.1, the F -term for the M -magnon

state reduces to

δEF
A = −

∫ ∞

−∞

dq̃

2π
e
−L( 1

2g
+ q̃2

4g
) · 4

M
∏

ℓ=1

S0(xq, xpℓ
)

(

M
∏

ℓ=1

a1(xq, xpℓ
) −

M
∏

ℓ=1

a6(xq, xpℓ
)

)2

(3.23)

at strong coupling. Performing the integral and using (3.19)–(3.22), we obtain

δEF
A = −4

√

g

πL

(

M
∏

ℓ=1

cos(pℓ

4 ) + sin(pℓ

4 )

cos(pℓ

4 ) − sin(pℓ

4 )
− 1

)2

e
− 1

2g

(

L+
M
P

ℓ=1

4g sin(
pℓ
2

)

)

. (3.24)

Interestingly the exponential part is generalization of (2.5).

If we choose the so-called spin-chain frame η(xq)/η̃(xq) = η(xp)/η̃(xp) = 1, the F -term

becomes

δEF
spin-chain = −4

√

g

πL

(

e−iP/2
M
∏

ℓ=1

cos(pℓ

4 ) + sin(pℓ

4 )

cos(pℓ

4 ) − sin(pℓ

4 )
− 1

)2

e
− 1

2g

(

L+
M
P

ℓ=1
4g sin(

pℓ
2

)

)

, (3.25)

where P =
∑

ℓ pℓ is the total momentum.

3.3 Comparison with exact results in sinh-Gordon model

In this subsection, we compare our proposed F -term with the results of sinh-Gordon model

in finite volume, which is solved exactly in [57]. The finite volume spectrum for M -

particle state in sinh-Gordon model are determined by the following non-linear integral

equations [57],

E(L) =

M
∑

j=1

m cosh θj −
∫ ∞

−∞

dθ

2π
m cosh θ K(θ) (3.26)

log Y (θ) = −mL cosh θ −
M
∑

j=1

log S

(

θ − θj − i
π

2

)

+ σ ∗ K(θ) , (3.27)

where S(θ) is the S-matrix which is given by

S(θ) =
sinh θ − i sin(θ0)

sinh θ + i sin(θ0)
with θ0 =

πb2

1 + b2
, (3.28)

and σ(θ), K(θ), convolution integral f ∗ g(θ) are defined as follows:

σ(θ) = −i
d

dθ
log S(θ), K(θ) = log(1 + Y (θ)), f ∗ g(θ) =

∫ ∞

−∞

dθ′

2π
f(θ− θ′)g(θ′) . (3.29)

The parameters θj(j = 1, . . . ,M) are determined by the equation log Y (θj + iπ/2) =

(2nj + 1)iπ where nj is an integer.
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For a large L case, we can neglect the convolution term because K(θ) = O(e−mL cosh θ).

In this case, since log Y (θj + iπ/2) = (2nj + 1)iπ, the equation (3.27) reduces to the Bethe

Ansatz equations

e−imL sinh θj =
M
∏

k 6=j

S(θj − θk). (3.30)

Substituting (3.27) to the second term of (3.26), we find that the last term of (3.26) has a

suggestive expression:4

δE
(main)
shG (L) = −

∫ ∞

−∞

dθ

2π
m cosh θ e−mL cosh θ

M
∏

j=1

S

(

θj − θ + i
π

2

)

(3.31)

One can show that this result can be obtained from the main part of the generalized F -term

formula (2.12), by substituting

q̃ = iq0 = im cosh

(

θ − iπ

2

)

= m sinh θ, q1 = m sinh

(

θ − iπ

2

)

= −im cosh θ,

S
baj

baj
(xq, xpj

) = S

(

θj − θ +
iπ

2

)

, (3.32)

and neglecting the backreaction term αℓ. Both results agree at leading order of saddle-point

approximation.

The backreaction part of the F -term seems to correspond to the convolution part

of (3.27). After including the convolution, the Bethe Ansatz equation (3.30) is modified as

log Y
(

θj + i
π

2

)

= (2nj + 1)iπ

= −imL sinh θj − iπ −
M
∑

k 6=j

log S(θj − θk) + σ ∗ K
(

θj +
π

2

)

, (3.33)

where for large L the last term becomes,

σ ∗ K
(

θj + i
π

2

)

≈
∫ ∞

−∞

dθ

2π
σ
(

θj + i
π

2
− θ
)

e−mL cosh θ
M
∏

k=1

S

(

θ − θk + i
π

2

)

. (3.34)

The parameters {θj} receive corrections due to the convolution. We write these corrections

as θj = θ̃j + δθj where {θ̃j} are the solutions of the equations (3.30),

e−imL sinh θ̃j =

M
∏

k 6=j

S(θ̃j − θ̃k) . (3.35)

Substituting θj = θ̃j + δθj into (3.33) and using (3.35), one can determine the form of δθj

as

δθj =

∫ ∞

−∞

dθ

2π
Aj({θ̃ℓ}, θ) e−mL cosh θ

M
∏

k=1

S

(

θ − θ̃k + i
π

2

)

, (3.36)

4The second part of
Q

S − 1 comes from the groundstate finite-size correction.
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at the leading order of e−mL cosh θ. The coefficients Aj({θ̃ℓ}, θ) follow from an infinitesimal

variation of the equation (3.33), though their actual expression will be complicated. Note

that nj’s are quantized at integers and cannot be varied. At large L, one can deduce a sum

rule among δθj from (3.33) and (3.34), which reads

δPtotal ≡ m cosh

M
∑

j=1

cosh θ̄jδθj

=
1

iL

M
∑

j=1

∫ ∞

−∞

dθ

2π
σ
(

θ̃j + i
π

2
− θ
)

e−mL cosh θ
M
∏

k=1

S

(

θ − θ̃k + i
π

2

)

. (3.37)

This relation is analogous to (3.11), but the total momentum defined as above is not kept

fixed once the convolution is taken into account.

Substituting these results into (3.26) once again, we obtain

E(L) =
M
∑

j=1

m cosh θ̃j +
M
∑

j=1

m sinh θ̃jδθj −
∫ ∞

−∞

dθ

2π
m cosh θK(θ)

≡
M
∑

j=1

m cosh θ̃j + δEshG(L) ,

where

δEshG(L)=−
∫ ∞

−∞

dθ

2π



m cosh θ−
M
∑

j=1

m sinh θ̃jAj({θ̃ℓ}, θ)



 e−mL cosh θ
M
∏

k=1

S

(

θ̃k−θ+i
π

2

)

.

This result is consistent with our proposal for the generalized F -term for multi-particle

states (2.12) and (2.13).

4. The µ-term formula for multi-particle states

As explained in section 2, the µ-term for one-particle states arises from an on-shell splitting

process aℓ(pℓ) → b(qb) + c(qc) which corresponds to the boundstate pole of the S-matrix

between aℓ and b. Similarly, we expect the generalized µ-term for multi-particle states

admits a similar interpretation. If the F -term integral picks up a pole of the S-matrix

S baℓ

baℓ
and if αk = δkℓ holds, that is if the backreaction localizes around the ℓ-th soliton, this

contribution is written as

δEµ
A =

M
∑

ℓ=1

∑

b

(−1)Fb
{

ǫ′b(q
∗
ℓ ) − ǫ′aℓ

(pℓ)
}

e−iq∗
ℓ
L Res

q1=q∗
ℓ

S baℓ

baℓ
(q1 , pℓ)

M
∏

k 6=ℓ

S bak

bak
(q∗ℓ , pk). (4.1)

If we take the real part of this equation, we obtain our µ-term formula (2.14).

We are going to consider two examples of multi-magnon states in order to give support

for our conjecture on the generalized µ-term (2.14). The first example is the state composed

of several giant magnons, whose finite-size energy is computed in [38]. Indeed, this result
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is correctly reproduced from our µ-term formula as we show in section 4.1. The second

example is the state composed of several dyonic giant magnons where each dyonic giant

magnon carries a large angular momentum in the second direction.

In order to obtain the finite-size energy in the second case, we solve the asymptotic

Bethe Ansatz in the su(2) sector at a finite length. Our analysis can be justified for the

following reason. Recall that the finite-size correction to the energy of the single dyonic

giant magnon was computed by using the generalized Lüscher formula in [37] and by solving

the Bethe Ansatz in the su(2) sector [38], and the two results turned out to coincide.5 Since

the two results closely resemble each other, we may assume that this coincidence remains

valid for certain multi-particle states. It is easy to generalize the Bethe Ansatz approach

to multi magnon states, and we make use of this result to conjecture the correct form of

the µ-term formula.

In general, however, these two methods do not give the same answer. For example, the

finite-size correction to the energy of a single giant magnon is computed by the generalized

Lüscher formula [53] and that of a two-magnon boundstate is computed by the asymptotic

Bethe Ansatz [54]. It turns out that only the former computation is consistent with the

result of string theory [35, 36]. Note that this mismatch by itself is not surprising because

the asymptotic Bethe Ansatz may receive corrections at finite size, as argued in [54].

It should be kept in mind that a similar idea has already been pointed out by Pozs-

gay [58]. He observed that the computation of the finite-size correction to energy based on

Bethe Ansatz equations resembles the Lüscher’s µ-term formula for relativistic integrable

theories, both of which exhibit exponential suppression in size. So our strategy may be

regarded as generalization of Pozsgay’s analysis to non-relativistic theories.

4.1 Classical finite-size correction to the energy of multi giant magnons

Let us first apply the generalized µ-term formula to a string state made up of many giant

magnons, A = {a(p1) . . . a(pM )}. The energy of such states was obtained by classical

finite-gap method in [38].

By substituting the S-matrix (2.15) with the coefficients (3.19)–(3.22) into the µ-

term (4.1) and taking the strong coupling limit g ≫ 1, we obtain

δEµ
A = Re

{

M
∑

ℓ=1

{

ǫ′(q∗ℓ ) − ǫ′(pℓ)
}

e−iq∗ℓ L · 4 Res
q1=q∗ℓ

(a1(xq, xpℓ
))2 S0(xq, xpℓ

)

×
M
∏

k 6=ℓ

(a1(xq∗ℓ
, xpk

))2S0(xq∗ℓ
, xpk

)

}

. (4.2)

where the momentum q∗ℓ is determined from the physical pole of Sbaℓ

baℓ
(q1, pℓ), as

q∗ℓ = − i

2g sin(pℓ

2 )
. (4.3)

5Actually, there are two types of finite-J1 giant magnon solutions whose energy is given by δEstring =

±δEµ
A . It is not clear at present if this sign ambiguity is attributed to the µ-term formula itself (4.21) or

the complication (like the choice of branch) when we evaluate the formula.
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Now we can borrow the result for one-particle state in [53],

{

ǫ′(q∗ℓ ) − ǫ′(pℓ)
}

e−iq∗ℓ L · 4 Res
q=q∗ℓ

(a1(xpℓ
, xq))2 S0(xpℓ

, xq) = −16g sin3
(pℓ

2

)

e
−2− L

2g sin(
pℓ
2 ) .

(4.4)

The final result of the µ-term is, assuming no two momenta are equal (pj 6= pk for j 6= k),

δEµ
A =

M
∑

ℓ=1



−16g sin3
(pℓ

2

)

M
∏

k 6=ℓ

sin2(pℓ+pk

4 )

sin2(pℓ−pk

4 )
exp

[

−L +
∑M

k=1 4g sin(pk

2 )

2g sin(pℓ

2 )

]



 . (4.5)

which is exactly identical to the result of [38] by identifying L with J1.

4.2 The µ-term from the asymptotic Bethe Ansatz

Results of the last subsection convince ourselves that our µ-term formula for multi-particle

states is correct, at least when all magnons are elementary. Below we will consider the

opposite situation where all particles are boundstates of a large number of elementary

magnons. In this situation, we will be able to trust the solution of the asymptotic Bethe

Ansatz at finite but large L, where L is the length (or size) of spin chain. Collecting all

these results, we are able to confirm our proposal for the generalized µ-term formula for

multi-particle states which we believe to be almost unique.

In the rest of this section, we will use the notation summarized in appendix B.

4.2.1 One-particle states

For the moment we focus on a single magnon boundstate. Let A = {a1(p1) · · · aQ(pQ)} be

a Q-magnon boundstate with Q > 1. For simplicity we assume the state A belongs to the

su(2) sector. The S-matrix is of the form [27, 12]

SL(ui , uj) =
ui − uj + i

ui − uj − i
eiϕL(ui ,uj) , (4.6)

uj = u(pj) =
1

2
cot
(pj

2

)

√

Q2
j + 16g2 sin2

(pj

2

)

, (4.7)

with ui−uj = i being a physical boundstate pole. We also assume that the phase ϕL(ui , uj)

is independent of the spin chain size L approximately up to small exponential corrections.

The periodic boundary condition takes the usual form

1 = e−ipjL
∏

i6=j

SL(uj , ui), P ≡
Q
∑

j=1

pj =
2πI

L
(I ∈ Z) . (4.8)

It then immediately follows that when L = ∞ Bethe roots of a Q-particle boundstate

spread as

uj,∞ = U∞ + i

(

j − Q + 1

2

)

, (j = 1, 2, . . . , Q), (4.9)

where U∞ is real so that the energy of the boundstate be real.
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From the Bethe Ansatz equations (4.8), we expect that when L is finite the rapidities

of constituent magnons be displaced by uj = uj,∞ + ∆uj . As discussed in [38], the Bethe

Ansatz equations (4.8) tell us that the difference of the displacements ∆uj among the inner

momenta are negligibly small:

1 ≫ ∆u1 − ∆u2 ≫ ∆u2 − ∆u3 ≫ · · · ,

1 ≫ ∆uQ − ∆uQ−1 ≫ ∆uQ−2 − ∆uQ−3 ≫ · · · .
(4.10)

Thus at leading order, we can write the displacement of rapidities as

∆u1 = ∆U + ∆ũ1 , ∆uk = ∆U (k = 2, . . . , Q − 1) , ∆uQ = ∆U + ∆ũQ . (4.11)

For later purpose, let us rewrite these displacements in terms of momentum,

∆p1 = ∆p1,U +∆p̃1 , ∆pk = ∆pk,U (k = 2, . . . , Q − 1) , ∆pQ = ∆pQ,U +∆p̃Q , (4.12)

where ∆pj,U accounts for the overall shift of rapidity ∆U .

Since the mode number I in (4.8) is an integer, it must be invariant as we vary L.

It then results in the conservation of the total momentum ∆P/P = ∆L/L ≈ 0, if L is

sufficiently large. From this momentum conservation it follows that

0 ≈ ∆P = ∆p1 +

Q−1
∑

k=2

∆pk + ∆pQ = ∆p̃1 +

Q
∑

j=1

∆pj,U + ∆p̃Q . (4.13)

Let us denote the sum
∑

j ∆pj,U by ∆PU . Since this is the displacement of the boundstate

momentum P caused by ∆U , we should have the relation ∆U = (∆PU )U ′(P ) where the

function U(P ) is given in (B.6).

Substituting the parametrization (4.11) into the Bethe Ansatz equations (4.8), we can

express the displacements ∆ũ1 and ∆ũQ as functions of rapidities at L = ∞. Since we

assumed the difference between SL and S∞ is negligible, we obtain

∆ũ1 = eip1,∞L Res
u1=u1,∞

Q
∏

i=2

S∞(ui , u1), ∆ũQ = e−ipQ,∞L Res
u1=u1,∞

Q−1
∏

i=1

S∞(uQ , ui),

(4.14)

where we used the unitarity relation S(u, v)−1 = S(v, u). From (4.9) we have Im p1,∞ > 0

and Im pQ,∞ < 0. Thus we find ∆ũ1 and ∆ũQ are exponentially suppressed in L.

Let ǫ(p) ≡ ε(u(p)) be the dispersion relation of an elementary magnon at L = ∞, and

Q
∑

j=1

ǫ(pj) = ǫQ(P ) ≡ εQ(U(P )), (4.15)

be the dispersion relation of a Q-particle boundstate, which depends solely on U = U(P ).

We also have

Q
∑

j=1

(∆pj,U)
dǫ(pj)

dpj
=

Q
∑

j=1

(∆U)
dε(uj)

duj
= (∆U)

d

duj

Q
∑

j=1

ε(uj) = (∆PU )
dǫQ(P )

dP
. (4.16)
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The finite-size correction to the energy of the state A is defined by

∆EBethe =

Q
∑

j=1

(∆pj)
dǫ(pj,∞)

dpj,∞
. (4.17)

With the help of the relations (4.16) and (4.13), one can show

∆Ea = (∆p̃1)
dǫ(p1,∞)

dp1,∞
+ (∆p̃Q)

dǫ(pQ,∞)

dpQ,∞
+ (∆PU )

dǫQ(P )

dP

= (∆p̃ a
1 )

(

dǫ(pa
1,∞)

dpa
1,∞

− dǫQa(P a
∞)

dP a
∞

)

+ (∆p̃ a
Q)

(

dǫ(pa
Qa,∞)

dpa
Qa,∞

− dǫQa(P a
∞)

dP a
∞

)

. (4.18)

To obtain a simpler expression, let us make two more assumptions on the momenta and the

S-matrix. Namely, pQ+1−j = (pj)
∗ for the momenta of magnons constituting a boundstate,

and

S(pi , pj)
∗ =

1

S((pi)∗ , (pj)∗)
=

1

S(pQ+1−i , pQ+1−j)
, (4.19)

for the S-matrix. Under these assumptions one can show ∆p̃Q = (∆p̃1)∗. However, one

should keep it in mind that these assumptions do not hold in general. For instance, it

was shown that a two-magnon boundstate at strong coupling do not generally obey p1 =

(p2)∗ [54].

By substituting the result for ∆pw = (∆uw) p′(uw) (w = 1, Q) given in (4.14) together

with ∆p̃Q = (∆p̃1)∗, we finally arrive at the expression

∆EBethe ≈ 2Re

{

{ǫ′(pQ,∞) − ǫ′Q(P∞)} e−ipQ,∞L Res
pQ=pQ,∞

Q−1
∏

k=1

S∞(pQ , pk)

}

. (4.20)

This is the leading finite-size correction to the energy of a Q-particle boundstate, and is

equivalent to the one obtained in [38]. There they computed the finite-size correction for

Heisenberg spin chain with Q ≫ g, and found it agrees with the finite-size correction to a

dyonic giant magnon.

For comparison, here we quote the generalized Lüscher µ-term for a Q-particle bound-

state:

δEµ
A ≈

∑

b

∑

all residues

Re

{

(−1)Fb {ǫ′b(q∗) − ǫ′Q(P )} e−iq∗L Res
q=q∗(P )

S bA
bA (q, P )

}

. (4.21)

In [37], it was shown that the sum over all possible flavors of b and the sum over all possible

residues provide the factor of 2 at strong coupling, which implies an interesting observation

δEµ
A ≈ ∆EBethe .

This equality should be regarded as approximate and not rigorous, as we discussed at

the beginning of this section. Consider, for instance, the case of Q = 1. The result of the

Bethe Ansatz (4.20) is insensible because no S-matrix is present, while the µ-term (4.21)

can still predict the finite-size correction to a single giant magnon.
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4.2.2 Multi-particle states

We will illustrate how we can generalize the above result into the multi-particle states. Let

A = {A1(P 1) . . . AM (PM )} be the state composed of magnons and magnon boundstates

where at least one of the Aj’s is a boundstate. Each Aa(P a) is a Qa-particle boundstate,

whose constituent magnons are written as {pa
1 , . . . , pa

Qa
}. When the size of spin chain L

becomes finite, the momentum of the constituent magnons begins to fluctuate around their

position at L = ∞ as

pa
j,L = pa

j,∞ + ∆pa
j ≡ pa

j,∞ + ∆p̃a
j + ∆pa

j,U . (4.22)

Using the rapidity variables, this can be rewritten as

∆ua
k = ∆ũ a

k + ∆Ua , (4.23)

where ∆pa
k.U accounts for the overall shift ∆Ua. A new feature of the multi-particle states

is that the momentum of each Qa-particle boundstate may possibly fluctuate:

P a
L =

Qa
∑

j=1

pa
j,L ≡ P a

∞ + ∆P a . (4.24)

Note the total momentum of the whole system is quantized as

Ptotal =
M
∑

a=1

P a
L =

M
∑

a=1

P a
∞ =

2πItotal

L
(Itotal ∈ Z) . (4.25)

The Bethe Ansatz equations are simply written as

1 = e−ipa
j L

Qa
∏

k 6=j

SL(pa
j , pa

k)
M
∏

b6=a

Qb
∏

ℓ=1

SL(pa
j , pb

ℓ). (4.26)

Evaluating the S-matrix in (4.26) around the boundstate pole, we can determine the vari-

ations ∆p̃ a
1 and ∆p̃ a

Qa
as in (4.14):

∆p̃ a
1 = eipa

1,∞L Res
pa
1=pa

1,∞







Qa
∏

k=2

SL(pa
k , pa

1)
M
∏

b6=a

Qb
∏

ℓ=1

SL(pb
ℓ , pa

1)







, (4.27)

∆p̃ a
Qa

= e−ipa
Qa,∞L Res

pa
Qa

= pa
Qa,∞







Qa−1
∏

k=1

SL(pa
Qa

, pa
k)

M
∏

b6=a

Qb
∏

ℓ=1

SL(pa
Qa

, pb
ℓ)







, (4.28)

Let us consider the product of (4.26) over j = 1, . . . , Qa and take its logarithm. It gives

−2πIa = P a
LL −

Qa
∑

j=1

M
∑

b6=a

Qb
∑

ℓ=1

δL(pa
j , pb

ℓ) , (4.29)
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where Ia is an integer and iδL(p, q) ≡ ln SL(p, q). Considering an infinitesimal variation of

this equation, we immediately find

0 = (∆P a)L + P a(∆L) −
Qa
∑

j=1

M
∑

b6=a

Qb
∑

ℓ=1

{

(∆pa
j )

∂δL(pa
j , pb

ℓ)

∂pa
j

+ (∆pb
ℓ)

∂δL(pa
j , pb

ℓ)

∂pb
ℓ

}

, (4.30)

which shows ∆P a ≈ ∆pa
j/L or ∆L/L, which is negligible for large L. Hence, we can treat

the finite-size effects for each boundstate of A separately as long as L is large. As a by-

product of this argument, one can see that the finite-size effects for elementary particles,

namely ∆P b for Qb = 1, are negligible for large L.

The finite-size correction to the total energy is

∆EBethe =

M
∑

a=1

∆EAa =

M
∑

a=1

Qa
∑

j=1

(

∆pa
j

) dǫ(pa
j,∞)

dpa
j,∞

, (4.31)

and each of ∆EAa ’s can be evaluated in much the same way as in one-particle states, (4.18)

or (4.20). The major difference from one-particle states is that the displacements of the

momentum (4.27), (4.28) acquire a lot more S-matrix factors in their right hand sides.

Assuming again the reality conditions on the momentum and the S-matrix (4.19), the

finite-size correction (4.31) becomes

∆EBethe ≈ 2Re

{

M
∑

a=1

{

ǫ′(p a
Qa,∞) − ǫ′Qa

(P a
∞)
}

e−ip a
Qa,∞L ×

Res
p a

Qa
=p a

Qa,∞

Qa−1
∏

k=1

S∞(p a
Qa

, p a
k )

M
∏

b6=a

Qb
∏

ℓ=1

SL(p a
Qa

, p b
ℓ )

}

. (4.32)

Just like one-particle states, one can repeat the arguments that led to δEµ
A ≈ ∆EBethe .

Combining that argument as well as the results for multi giant magnons discussed in sec-

tion 4.1, we conjecture the µ-term formula for multi-magnon states shall be given by (2.14),

namely

δEµ
A ≈ Re







M
∑

ℓ=1

∑

b

(−1)Fb
{

ǫ′b(q
∗
ℓ ) − ǫ′aℓ

(pℓ)
}

e−iq∗ℓ L Res
q1=q∗

ℓ

S baℓ

baℓ
(q1 , pℓ)

∏

k 6=ℓ

S bak

bak
(q∗ℓ , pk)







,

(4.33)

where the sum over all possible residues are understood implicitly.

5. Summary and discussions

In this paper, we proposed the generalized Lüscher formula for multi-particle states. The

formula consists of F -term and µ-term, which correspond to one-loop and classical finite-

size correction to the energy of a string state, respectively.

In section 3, we followed the finite-gap method of [40] to obtain the F -term for multi-

particle states. The F -term formula was then compared with the exact finite-size spectrum

– 19 –



J
H
E
P
0
9
(
2
0
0
8
)
0
2
5

of the sinh-Gordon theory [57], where agreement is found formally. In section 4, in search of

the correct µ-term formula we considered the finite-size correction of multi giant magnons

computed in [38], and calculated the finite-size correction to the energy of the states with

many magnon boundstates by using the asymptotic Bethe Ansatz in the su(2) sector. It

was shown that our µ-term formula for multi-particle states is consistent with both results.

Also, in appendix C, we shall show that various transcendental terms which appeared as

the wrapping effects for the length four Konishi operator of N = 4 super Yang-Mills theory,

can partially be reproduced by evaluating the F -term formula at weak coupling.

As we argued in the introduction, these formulae will be regarded as the large size limit

of the TBA equations for the su(2|2)2 spin chain. It will be important to give rigorous

derivation of these formulae in order to compute finite-size effects more precisely.

Finite-size effects in general will give further insight into the AdS/CFT correspondence.

Recall that the BPS condition imposes strict constraints on the dispersion relation at

infinite size (1.1) and (1.2). The finite-size corrections, in contrast, contain dynamical

information of the theory. For instance, once the finite-size spectrum is obtained, we may

use the formula in the opposite direction, to probe the spectrum of the (mirror) theory, or

the on-shell splitting processes.

Since the finite-size effects depend sensitively on boundary conditions, it is very in-

teresting to apply the generalized Lüscher formula to integrable, exactly marginal defor-

mations of the N = 4 super Yang-Mills theory. One famous example is the β (or the

Leigh-Strassler) deformation [68], and various directions of integrable, exactly marginal

deformation are known [69 – 76]. The supergravity dual is obtained by a sequence of T -

dualities [77], and the integrability of classical string action is studied in [78 – 80]. Notably,

one can write down the S-matrix in the same way as N = 4 while boundary condition

is twisted. Moreover, wrapping effects [59] as well as finite-size effects [81] have already

been known for certain deformations, which should be reproduced from the Lüscher-type

computation.
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A. Kinematical factor for multi giant magnon background

Following the same step and the same notation as [40], we can constrain the fluctuation of
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quasi-momenta as

δp1̃ = +
Ax + B

x2 − 1
−

∑

n,j=3̃4̃3̂4̂

(

N 1̃j
n α(x1̃j

n )

x − x1̃j
n

− N 2̃j
n α(x2̃j

n )

1/x − x2̃j
n

− N 2̃j
n α(x2̃j

n )

x2̃j
n

)

+ δpGM
1̃

,

δp2̃ = +
Ax + B

x2 − 1
−

∑

n,j=3̃4̃3̂4̂

(

N 2̃j
n α(x2̃j

n )

x − x2̃j
n

− N 1̃j
n α(x1̃j

n )

1/x − x1̃j
n

− N 1̃j
n α(x1̃j

n )

x1̃j
n

)

+ δpGM
2̃

,

δp3̃ = −Cx + D

x2 − 1
+

∑

n,j=1̃2̃1̂2̂

(

N 3̃j
n α(x3̃j

n )

x − x3̃j
n

− N 4̃j
n α(x4̃j

n )

1/x − x4̃j
n

− N 4̃j
n α(x4̃j

n )

x4̃j
n

)

+ δpGM
3̃

,

δp4̃ = −Cx + D

x2 − 1
+

∑

n,j=1̃2̃1̂2̂

(

N 4̃j
n α(x4̃j

n )

x − x4̃j
n

− N 3̃j
n α(x3̃j

n )

1/x − x3̃j
n

− N 3̃j
n α(x3̃j

n )

x3̃j
n

)

+ δpGM
4̃

,

δp1̂ = +
Ax + B

x2 − 1
+

∑

n,j=3̂3̂3̃4̃

(

N 1̂j
n α(x1̂j

n )

x − x1̂j
n

− N 2̂j
n α(x2̂j

n )

1/x − x2̂j
n

− N 2̂j
n α(x2̂j

n )

x2̂j
n

)

,

δp2̂ = +
Ax + B

x2 − 1
+

∑

n,j=3̂4̂3̃4̃

(

N 2̂j
n α(x2̂j

n )

x − x2̂j
n

− N 1̂j
n α(x1̂j

n )

1/x − x1̂j
n

− N 1̂j
n α(x1̂j

n )

x1̂j
n

)

,

δp3̂ = −Cx + D

x2 − 1
−

∑

n,j=1̂2̂1̃2̃

(

N 3̂j
n α(x3̂j

n )

x − x3̂j
n

− N 4̂j
n α(x4̂j

n )

1/x − x4̂j
n

− N 4̂j
n α(x4̂j

n )

x4̂j
n

)

,

δp4̂ = −Cx + D

x2 − 1
−

∑

n,j=1̂2̂1̃2̃

(

N 4̂j
n α(x4̂j

n )

x − x4̂j
n

− N 3̂j
n α(x3̂j

n )

1/x − x3̂j
n

− N 3̂j
n α(x3̂j

n )

x3̂j
n

)

,

where δpGM
i account for the backreaction to classical background of multi giant magnons.

The δpGM
i ’s are given by

δpGM
1̃

= −
N
∑

ℓ=1

∑

β=±

(

Aβ
ℓ

1/x − Xβ
ℓ

+
Aβ

ℓ

Xβ
ℓ

)

, δpGM
2̃

=
N
∑

ℓ=1

∑

β=±

Aβ
ℓ

x − Xβ
ℓ

,

δpGM
3̃

= −
N
∑

ℓ=1

∑

β=±

Aβ
ℓ

x − Xβ
ℓ

, δpGM
4̃

=

N
∑

ℓ=1

∑

β=±

(

Aβ
ℓ

1/x − Xβ
ℓ

+
Aβ

ℓ

Xβ
ℓ

)

.

As discussed in [67, 40], the parameters A,B,C,D and Aβ
ℓ are constrained from x →

1/x symmetry and the large x asymptotics. Concerning Aβ
ℓ , we obtain the relations

Nall ≡
∑

n

∑

i=1̃2̃1̂2̂

∑

j=3̃4̃3̂4̂

N ij
n

α(xij
n )

xij
n

=
M
∑

ℓ=1

∑

β=±

Aβ
ℓ

Xβ
ℓ

, (A.1)

0 =

M
∑

ℓ=1

∑

β=±

Aβ
ℓ

(

1 − 1

(Xβ
ℓ )2

)

. (A.2)
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These relations can be solved as

A+
ℓ

Nall
= αℓ

(X+
ℓ )2(X−

ℓ − 1)(X−
ℓ + 1)

(X−
ℓ − X+

ℓ )(X−
ℓ X+

ℓ + 1)
,

A−
ℓ

Nall
= −αℓ

(X−
ℓ )2(X+

ℓ − 1)(X+
ℓ + 1)

(X−
ℓ − X+

ℓ )(X−
ℓ X+

ℓ + 1)
,

M
∑

ℓ=1

αℓ = 1 . (A.3)

Note, however, that we cannot determine each αℓ only from the conditions discussed above.

The one-loop energy is expressed as

δ∆ = 2g





∑

n

∑

i=1̃2̃1̂2̂

∑

j=3̃4̃3̂4̂

N ij
n

α(xij
n )

(xij
n )2

−
M
∑

ℓ=1

∑

β=±

Aβ
ℓ



 ≡
∑

i,j

∑

n

N ij
n Ω(xij

n ) , (A.4)

where

Ω(x) =
2

x2 − 1

[

1 −
M
∑

ℓ=1

αℓ

(

X−
ℓ + X+

ℓ

X−
ℓ X+

ℓ + 1

)

x

]

. (A.5)

B. Notation for the su(2) Bethe Ansatz

Our notation is similar to the one used in [11].

Let us introduce the rapidity variable u(p) by

u(p) =
1

2
cot

p

2

√

1 + 16g2 sin2 p

2
g ≡

√
λ

4π
. (B.1)

Its Zhukovsky map of x(u) and the spectral parameters x± are defined by

u = g

(

x +
1

x

)

=
g

2

(

x+ +
1

x+
+ x− +

1

x−

)

, (B.2)

x± = x

(

u = u(p) ± i

2

)

= e±ip/2
1 +

√

1 + 16g2 sin2 p
2

4g sin p
2

. (B.3)

The spectral parameters satisfy the identity

x+ +
1

x+
− x− − 1

x−
=

i

g
. (B.4)

Consider a set of the spectral parameters {x1 , . . . , xQ} which satisfy the boundstate

condition x+
j = x−

j+1 . If we denote the outermost parameters by X+ = x+
Q and X− = x−

1 ,

then they take the form

X± = e±iP/2
Q +

√

Q2 + 16g2 sin2 P
2

4g sin P
2

P =

Q
∑

k=1

pk , (B.5)

which can be shown using (B.4). The rapidity variable U(P ) for a boundstate is

U =

Q
∑

k=1

uk =
g

2

(

X+ +
1

X+
+ X− +

1

X−

)

. (B.6)
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The rapidities {uk} which constitute a Q-particle boundstate can be written as

uk = U + i

(

k − Q + 1

2

)

, (B.7)

which can be shown from the conditions x+
j = x−

j+1 and the identities

u1 − u2 ± i =
(

x±
1 − x∓

2

)

(

1 − 1

x±
1 x∓

2

)

. (B.8)

C. Wrapping and transcendentality

As we saw in section 2, the generalized Lüscher formula at weak coupling predicts the

corrections of order g2L to the prediction of the asymptotic Bethe Ansatz, which are thought

of as wrapping effects [29].

In this appendix, we apply the generalized Lüscher formula to length L operators in the

su(2) sector at weak coupling, under several approximations. Although our computation

is not quantitatively rigorous, we can reproduce the transcendental terms that appear only

after wrapping effects are taken into account [31 – 33, 59].

C.1 From TBA to the Lüscher formula

The generalized Lüscher formulae presented in section 2 contain a sum over the virtual

particle b. We were able to neglect terms with Qb > 1 at strong coupling because they

decay more rapidly than those with Qb = 1. However, as we saw in (2.4), at weak coupling

they bring another contribution of order g2L. Thus, we have to reconsider if we should

include virtual particles with higher multiplet numbers.

In the perturbative computation in quantum field theory, of course, virtual particles

are elementary fields which appear in the Lagrangian. As for integrable systems which are

not defined in terms of Lagrangian, it is not clear if we may neglect virtual boundstate

particles. To answer this question, we recall that the (generalized) Lüscher formula is

regarded as the large size limit of TBA for excited states.

The starting point of TBA is the observation that the (Euclidean) partition function of

a two dimensional theory is invariant under the interchange of the spacetime coordinates in

two dimensions. One can thus equate the groundstate energy of the original theory at finite

size with the free energy of the interchanged theory (also called the ‘mirror’ theory [54])

at finite temperature [50]. Clearly, to compute a partition function or a free energy we

need the whole spectrum of the theory including (stable) boundstates. The partition

function obtained in this way has a sum over the particle spectrum and an integral over

the momentum of the particle. Moreover, it is known that TBA for excited states is

obtained by deforming the momentum integral of this partition function to pick up a pole

singularity corresponding to a physical particle of the theory [51, 52]. Thus, the sum over

spectrum should remain as before in the TBA formula for one-particle or multi-particle

states.
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Thus we conjecture that a sum over an infinite tower of BPS boundstates is necessary

for the generalized Lüscher formula to compute the wrapping effects correctly. Below we

will see that this summation indeed reproduces the expected transcendental structure (1.4).

Here is another remark on the mirror theory. Upon identifying the generalized Lüscher

formula as a limiting behavior of TBA equations, we should reinterpret the spectrum, the

dispersion relation and the S-matrix appearing in the generalized F -term formula as those

of the mirror theory. On the other hand, we have used the S-matrix of the original su(2|2)2

theory to compute the semiclassical spectrum of finite-size giant magnons. Putting these

two facts together, the conjecture of [54] turns out to be very plausible; the mirror S-matrix

is related to the original S-matrix via analytic continuation.

C.2 The F -term at weak coupling and transcendentality

We will focus on length L (L = 4, 5, 6, . . . ) operators with two impurities with real momenta

which have the form

tr[WWZJ1] + (permutations) , L = J1 + 2 , (C.1)

where W and Z are complex scalars of N = 4 super Yang-Mills. We then study how the

transcendental wrapping effects appear from the Lüscher formula.

First of all, we argue that there is no contribution from the µ term for the opera-

tors (C.1) at weak coupling. Recall that this operator can be interpreted as the state

with two magnons of real momenta, {a1(p1)a2(p2)}. Because the µ-term for multi-magnon

states is associated with the splitting process of either a1(p1) or a2(p2), it is sufficient to

examine if the splitting of an elementary magnon occurs at weak coupling.

Let us look at the energy-momentum conservation at the point of splitting

√

Q2
a + 16g2 sin2

(p

2

)

=

√

Q2
b + 16g2 sin2

(pb

2

)

+

√

Q2
c + 16g2 sin2

(

p − pb

2

)

. (C.2)

We can solve this equation and express pb in terms of p, g and the multiplet numbers. If

the momentum pb behaves regularly as g → 0, we obtain Qa = Qb + Qc at g = 0. Since all

Q’s are positive integers, this equation has no solution for elementary magnons, Qa = 1.

There can be singular solutions of (C.2), which behave as pb ∼ ±2i ln g at weak coupling.

However, upon close inspection of the location of S-matrix singularities as in [37], one can

show that any poles or zeros of the S-matrix in the su(2) sector cannot be the singular

solutions of (C.2). Hence we neglect µ-term at weak coupling.

Thus, what matters is calculation of the F -term. In this paper, our analysis is restricted

to the case where the virtual particle is one of the symmetric scalar components in the

boundstate multiplet, where one can use the fusion rule to obtain elementary-boundstate

S-matrix. Of course, we have to sum over all 16Q2
b polarizations of the (mirror) Qb -

boundstate in order to obtain the quantitatively correct answer. It is nevertheless remark-

able that we are able to capture the appearance of transcendentality only from such a
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simple computation. Under this assumption,6 the F -term can be rewritten as

δEF
su(2) ≈ −

∞
∑

Qb=1

(Qb + 1)2 × (C.3)

∫ ∞

−∞

dq̃

2π

(

1 −
M
∑

k=1

αk

ǫ′ak
(pk)

ǫ′b(q
1)

)

e
−2L arcsinh

(
√

Q2
b
+q̃2

4g

)

2
∏

ℓ=1

Sbaℓ

baℓ
(q1, pℓ) .

where factor (Qb + 1)2 comes from the degeneracy of symmetric scalars in Qb -boundstate,

φ(i1 . . . φiQb
) φ̄ (̄1 . . . φ̄ ̄Qb

) with ia , ̄b = 1 or 2.

At leading order of g ≪ 1, the exponential factor becomes

e
−2L arcsinh

(
√

Q2
b
+q̃2

4g

)

≃ (4g2)L

(Q2
b + q̃2)L

. (C.4)

and the backreaction terms become

2
∑

k=1

αk

ǫ′ak
(pk)

ǫ′b(q
1)

e
−2L arcsinh

(
√

Q2
b
+q̃2

4g

)

≈ −
2
∑

k=1

αk · 2q̃ sin(pk)
(4g2)L+1

(Q2
b + q̃2)L+1

. (C.5)

Assuming αk is regular at g = 0, the backreaction part is higher order in g compared to

the main part (C.4). So we neglect the backreaction part in what follows.

The elementary-boundstate S-matrix is same as the one in the su(2) sector, and is

given by7

Sbal

bal
(q1, pl) = Gl(Qb − 1)Gl(Qb + 1)σ2(Yb,Xal

), (C.6)

where

Gl(Q) =
u(q1, Qb) − u(pl, 1) + iQ

u(q1, Qb) − u(pl, 1) − iQ
with u(p,Q) =

1

2
cot
(p

2

)

√

Q2 + 16g2 sin2
(p

2

)

,

(C.7)

and σ2(Yb,Xal
) is the dressing phase, which does not contribute to the F -term at g2L.

Then using u(q1, Qb) ≈ −q̃/2, the S-matrix factor is evaluated as

2
∏

ℓ=1

Sbaℓ

baℓ
(q1, pℓ) =

2
∏

ℓ=1

−q̃/2 − u(pl, 1) + i(Qb − 1)

−q̃/2 − u(pl, 1) − i(Qb − 1)
· −q̃/2 − u(pl, 1) + i(Qb + 1)

−q̃/2 − u(pl, 1) − i(Qb + 1)
, (C.8)

which tends to 1 for Qb ≫ 1.

6Strictly speaking, our assumptions include: (i) an infinite tower of BPS boundstates completes the

spectrum of the su(2|2) spin chain. (ii) the spectrum of the mirror theory is same as the original theory.

(iii) the dispersion relation of the mirror particle is given by the Wick rotation
7Note added: It was pointed out in [34] that we should use S-matrix in the sl(2) sector, because

boundstates in the mirror model live in AdS5 subspace [54]. Results of our primitive computation do not

change even if we use the S-matrix in the sl(2) sector.
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Thus after performing the integration over q̃, we obtain the final expression

δEF
su(2) = −

∞
∑

Qb=1

Q2
b ·

1

2π
· (4g2)L ·

√
π

Q2L−1
b

Γ(L − 1
2)

Γ(L)
+

(

1

Q2L−2
b

)

(C.9)

≈ −22L−1

√
π

Γ(L − 1
2)

Γ(L)
ζ(2L − 3) g2L . (C.10)

If we substitute the values L = 4, 5, 6, 7 to this result, they become:

δEF
su(2)(L = 4) ≈ −40 ζ(5) g8, δEF

su(2)(L = 5) ≈ −140 ζ(7) g10,

δEF
su(2)(L = 6) ≈ −504 ζ(9) g12, δEF

su(2)(L = 7) ≈ −1848 ζ(11) g14 .

The results show that the F -term for length L operator contains a term proportional to

ζ(2L − 3) as conjectured in (1.4). There may possibly be additional terms of other tran-

scendental degree, e.g. ζ(2L − 2), ζ(2L − 1), . . . or ζ(2L − 4), ζ(2L − 5), . . ., if we include

the contributions from the whole S-matrix and compute the F -term without any approxi-

mations.

From the standpoint of the AdS/CFT correspondence, it may be puzzling to substitute

L = J1 at strong coupling and L = J1 + J2 at weak coupling. As discussed in [37], this

is a consequence of the fact that finite-size effects depend on the choice of frame. In fact,

we have seen a similar phenomenon also in section 3. There we found the choice of frame

is related to that of twists. Different choice of twists should modify the finite-size effects,

because they are physical quantities sensitive to boundary conditions.
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